aiorhuman-gpt

Config and Deploy Infrastructure

Back


Image source: GitHub - allegroai/clearml-serving

This setup orchestrates a scalable ML serving infrastructure using ClearML, integrating Kafka for message streaming, ZooKeeper for Kafka coordination, Prometheus for monitoring, Alertmanager for alerts, Grafana for visualization, and Triton for optimized model serving.

COMPLETED:

Install clearml-serving CLI:

pip install clearml-serving #you prob did this already

Create the Serving Service Controller.

clearml-serving create --name "aiorhu demo"`

Write down the Serving Service ID

Edit the docker-compose-triton.yml file.

Edit the environment variables file

  CLEARML_WEB_HOST="https://app.clear.ml"
  CLEARML_API_HOST="https://api.clear.ml"
  CLEARML_FILES_HOST="https://files.clear.ml"
  CLEARML_API_ACCESS_KEY="<access_key_here>"
  CLEARML_API_SECRET_KEY="<secret_key_here>"
  CLEARML_SERVING_TASK_ID="<serving_service_id_here>"

Spin the clearml-serving containers

cd docker && docker-compose --env-file example.env -f docker-compose-triton.yml up 

Notice: Any model that registers with “Triton” engine, will run the pre/post processing code on the Inference service container, and the model inference itself will be executed on the Triton Engine container.

Let’s review what we did.

Explore ClearML

Explore Docker

Explore Grafana